## PILOT LEARNING CALCULUS II ENGINEERING PROBLEM-SET 5 <br> FALL 2019

(1) Psychologists interested in learning theory study learning curves. A learning curve is the graph of a function $\mathrm{P}(\mathrm{t})$, the performance of someone learning a skill as a function of the training time $t$. The derivative $\mathrm{dP} / \mathrm{dt}$ represents the rate at which performance improves.
(a) Based on your own learning experience, sketch what you think a typical learning curve looks like.
(i) When do you think P increases most rapidly?
(ii) What happens to $\mathrm{dP} / \mathrm{dt}$ as t increases?
(b) If M is the maximum level of performance of which the learner is capable, explain why the differential equation

$$
\frac{d P}{d t}=k(M-P)
$$

where k is a positive constant, is a reasonable model for learning.
(c) Make a rough sketch of a possible solution of this differential equation. How does this graph compare to the one that you drew in (a)?
(2) Consider the differential equation $y^{\prime}=x+y^{2}$.
(a) Sketch the direction field of the differential equation.
(b) Then use it to sketch a solution curve that passes through the point $(0,0)$.
(3) Solve the following differential equations
(a)

$$
\frac{d v}{d s}=\frac{s+1}{s v+s}
$$

(b)

$$
\frac{d y}{d \theta}=\frac{e^{y} \sin ^{2} \theta}{y \sec \theta}
$$

(4) Find an equation of the curve that passes through the point $(0,1)$ and whose slope at $(x, y)$ is $x y$.
(5) The figure below shows a circuit containing an electromotive force, a capacitor with a capacitance of C farads (F), and a resistor with a resistance of R ohms $(\Omega)$.


1

The voltage drop across the capacitor is $\mathrm{Q} / \mathrm{C}$, where Q is the charge (in coulombs). In this case, Kirchhoff's Law gives

$$
R I+\frac{Q}{C}=E(t)
$$

The rate at which the capacitor is charging equals $I=d Q / d t$, therefore,

$$
R \frac{d Q}{d t}+\frac{Q}{C}=E(t)
$$

(a) Suppose the resistance is $5 \Omega$, the capacitance is 0.05 F , a battery give a constant charge of 60 V , and the initial charge is $\mathrm{Q}(0)=0 \mathrm{C}$. Find the charge and current at time t .
(b) Suppose the resistance is $2 \Omega$, the capacitance is 0.01 F , the initial charge is $Q(0)=0 \mathrm{C}$, and $\mathrm{E}(\mathrm{t})=10 \sin 60 \mathrm{t}$. Find the charge and current at time t .

